Computer Modeling of a Vertical Array in a Stratified Ocean

نویسندگان

  • Lin Li
  • Subhashis Mallick
  • Dennis Lindwall
چکیده

The response of vertical arrays at single frequencies (CW) and for homogeneous media is well known. This paper addresses the issues of frequency dependence and sound velocity gradients for the vertical array response in a deep ocean. I have modified the synthetic seismogram code of Neil Frazer, Subhashis Mallick and Dennis Lindwall to address this problem. The code uses a rearrangement of the Kennett reflectivity algorithm (Kennett, 1974, 1983) which computes the geoacoustic response for depth dependent media and pulse sources by the wave number integration method. The generalized Filon method is applied to the slowness integral for an additional increase in speed (Frazer and Gettrust, 1984; Filon, 1928). The original code computes the response of a single source at a specified depth. The new code has several improvements over the previous one. First, it is a much simplified code addressing only acoustic interaction. The total length is about half the length of the original code. Secondly, the code can compute the response of a vertical array of point sources. By changing the phase delay between the sources, we can steer the beam to the places of most interest. Thirdly, the code reduces considerably numerical noise at large offsets. The original work has numerical noise beyond about 30 km offset at 50 Hz which limits the application of reflectivity modeling in long range problems. The improvement comes with the optimization of the program, both in the speed and program structure. The improved algorithm can be used to get the far offset response (up to 150 km) of a vertical array in the deep ocean at frequencies up to at least 250 Hz. The modeling results are compared to analytical and benchmark solutions. The modified reflectivity code can be applied to the study of pulsed-vertical array sources such as were deployed on the ARSRP (Acoustic Reverberation Special Research Program) acoustic cruises. Thesis Supervisor: Ralph Stephen Senior Scientist Woods Hole Oceanographic Institution Acknowledgments This work was supported by the National Science Foundation under grant number OCE-91-18943, the Office of Naval Research under grant number N00014-90-J-1493 and Woods Hole Oceanographic Institution. The successful completion of this thesis was made possible by the support and encouragement of my friends and colleagues. Special appreciation is given to, Ralph Stephen, my advisor, for his confidence, great guidance, patience and friendship. He always had time to talk with me and always with a positive attitude. Marcia McNutt, for her encouragement, suggestion and a lot of help. Dick Von Herzen, for his friendly encouragement, his advice both in science and way of life. Bob Detrick, for his help and encouragement. John Collins, for his help at the time I needed it most. Steve Swift, for his introduction and follow-on help in the project. Tom Bolmer, did a tremendous job keeping the computer running with good performance. Mom and Dad, who raised me to be tough, to be intelligent, to be anyone that I dream to be. Lu Zang, my wife, to whom the thesis is dedicated. Special thanks also go to Emily Hooft, Javier, Cecily ... for their encouragement and help. Thanks God for giving me the strength and the luck to be with those nice people.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer Simulation Studies on the Effect Overlap Ratio for Savonius Type Vertical Axis Marine Current Turbine

The Ocean has provided a new avenue in the quest for renewable energy. One potentialsource of energy is marine current, which is harnessed using either vertical or horizontal axis turbines.This paper describes a particular type of vertical axis turbine which is suitable for low current velocityapplications. The simulation of Savonius-type turbine, which hitherto has never been proposed formarin...

متن کامل

3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon

Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...

متن کامل

Ocean Currents Modeling along the Iranian Coastline of the Oman Sea and the Northern Indian Ocean

The Makran Coast (Iranian Coastline of the Oman Sea on the Northern Indian Ocean) plays an important role in country’s future navigation and trade due to its accessibility. In 2014, the Iranian Makran coastline was selected by the PMO to be studied as the Phase 6 in the series of Monitoring and Modelling Studies of Iranian Coasts with all disciplines being in investigated including currents. Al...

متن کامل

Coastal Ocean Modeling: Processes and Real-time Systems

Introduction The coastal oceans are among the most challenging marine environments in the world. They are subject to the combined geometrical constraints of irregular coastlines and highly variable (steep and tall) bathymetry, and are forced both internally, laterally and surfacially by a complex array of tidal, wind and buoyancy forces on a broad range of space/time scales. The resulting coast...

متن کامل

Karstic water exploration using the Schlumberger VES and dipole–dipole resistivity profiling surveys in the Tepal area, west of Shahrood, Iran

The need for clean groundwater resources to have sustainable development in a country is undoubted. Due to the importance and high quality of karstic waters in supplying water in Iran especially in Shahrood city, it is attempted in this research work to recognize and explore karstic waters in southwest of Tepal area, Shahrood. For this purpose, integration of the results obtained from the metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010